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1 Introduction

There are situations in which it is necessary to combine samples obtained under different simulation

conditions to determine properties (e.g. averages or PMFs) of the system under a single condition

(which may not even be one of the conditions that were actually simulated). One example is

the determination of a PMF to obtain accurate measures of a free energy barrier. If the barrier

is substantially higher than the minima, then a standard canonical simulation will provide little

sampling at the barrier, and thus may not be able to accurately estimate the barrier height. An

alternative strategy is to use umbrella sampling with a series of biasing potentials to confine the

system to small regions of the PMF. Together, these provide adequate sampling of the entire reduced

coordinate of interest (see, for example, references 1,2). Since we know the biasing potential, we can

“unbias” the samples of each simulation. Suppose that the underlying potential of interest is U(p)

and we apply a biasing potential Vi(x) to the i-th simulation, where x(p) is the reduced coordinate

with respect to which we are interested in obtaining the PMF, i.e. we obtain a canonical sample

distributed according to exp[−β(U(p)+Vi(x(p))]. To unbias the estimated population P (x = xj) we

can multiply the estimated probability by exp[βVi(xj)]. To obtain the full unbiased distribution, we

need to combine the data from all of the simulations. If the sampling were extremely thorough, then
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the unbiased distributions for different simulations i would be the same, and any linear combination

would give the same result. However, this is a very unrealistic limit, since if this were the case,

then there would have been no reason to use a biasing potential in the first place. For any realistic

situation, the optimal weights will not be equal, but should be chosen so that the simulations which

have a higher uncertainty in their estimates of the unbiased probabilities are weighted less.

Another example of a situation where reweighting is necessary is when simulations are performed

at multiple temperatures, but where the property of interest is only needed at one temperature.

This arises in replica exchange simulations, for example. Simulations at higher temperature than

the target temperature allow better sampling of regions that are high in potential energy, while

simulations at lower temperature provide better sampling of regions that have high free energy due

to low entropy.3

The general problem which will be studied in this chapter is formulated as follows. Suppose

that we have performed S simulations and have generated Ni samples from the i-th simulation.

We then discretize the samples into M bins to determine a histogram with respect to the biasing

coordinate. If the simulations were performed using a biasing potential with respect to a reduced

coordinate x, then the histogram must be with respect to x. If the simulations were temperature-

biased, then the histogram must be with respect to the potential energy E(p). If both temperature

and coordinate biasing were used, then a two-dimensional histogram with respect to both x and E

must be constructed. Let pij be the estimate of the (biased) probability in the j-th bin in the i-th

simulation. We assume that pij is related to p◦j , the unbiased probability of bin j, via

pij = ficijp
◦
j , (1)

where cij is the biasing factor and fi is a normalizing constant chosen such that
∑

j pij = 1,

i.e. f−1

i =
∑

j cijp
◦
j . The biasing factor must be chosen appropriate to the simulation performed,

e.g. cij = exp[−(βi−β0)Ej ] for temperature biasing (where βi and β0 are the inverse temperatures of
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simulation i and the target temperature, respectively). For coordinate biasing, cij = exp[−βVi(xj)].

In addition, the normalizing constants fi have physical meaning, as β−1

i log fi is the Helmholtz free

energy of the i-th simulation.4 We wish to find an optimal estimate of p◦j .

We will show below that an optimal estimate of p◦j is given by

p◦j =

∑S
i=1

nij
∑S

i=1
Nificij

(2)

where nij is the number of counts in histogram bin j for simulation i, and Ni is the total number

of samples generated by the i-th simulation. As stated above, the unbiased probabilities are also

constrained by the normalization condition

f−1

i =

M
∑

j=1

cijp
◦
j . (3)

Equations 2 and 3 are collectively known as the Weighted Histogram Analysis Method (WHAM)

equations, which were first proposed by Ferrenberg and Swendsen in the context of the statistical

physics of Ising models5,6 and were introduced into the molecular simulation literature by Kumar,

et al.4 The WHAM equations are a system of M + S nonlinear equations that must be solved

self-consistently for p◦j (j = 1, . . . ,M) and fi (i = 1, . . . , S). In practice, this is typically done in an

iterative fashion by using an arbitrary set of starting values for fi (often f1 = f2 = · · · = fS = 1) to

calculate p◦j using Equation 2, then using those p◦j values to update fi, and repeating the process

until convergence is achieved. In principle, any numerical method for solving systems of nonlinear

equations7 could be used. It is interesting to note that Equation 2 depends on the bin counts nij

only via their sum over all simulations, i.e. we only need to know the total number of counts in a

given bin from all simulations and not what proportion of the counts came from which simulation.
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2 Two derivations of the WHAM equations

In this section we present two alternative derivations of Equation 2. The first derivation (section 2.1)

roughly follows that of Ferrenberg and Swendsen5 and Kumar, et al.,4 and is based on a minimization

of the variance of the estimated unbiased probability. The second (section 2.2) is based on the work

of Bartels and Karplus,8 which uses a maximum likelihood approach. It is somewhat surprising that

although the two derivations appear to be based on very different assumptions and approximations,

they end up giving the same final result. This would seem to imply that the two approaches are in

some way equivalent. The connection may be related to the fact that maximal likelihood estimators

in the “asymptotic limit” of large sample sizes have the smallest possible variance in the estimated

parameters achievable by any unbiased estimator,9 however a full examination of this idea is beyond

the scope of this course.

2.1 The “traditional” derivation

Let Ωij be the best estimate of the unbiased probability of the j-th bin using the i-th simulation,

i.e.

Ωij =
nij

Nicijfi

(4)

(which is obtained by rearranging the expression analogous to Equation 1 but with Ωij substituting

for p◦j). We will estimate p◦j as a weighted sum of Ωij over all simulations i:

p◦j =
S
∑

i=1

wiΩij . (5)
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We wish to find the values of wi (subject to the constraint
∑S

i=1
wi = 1) which minimize the

expected variance in p◦j :

var(p◦j ) = 〈(p◦j − 〈p◦j 〉)
2〉

=

〈(

S
∑

i=1

wiΩij −

〈

S
∑

i=1

wiΩij

〉)2〉

=

〈(

S
∑

i=1

wi(Ωij − 〈Ωij〉)

)2〉

.

Let δΩij ≡ Ωij − 〈Ωij〉. Then

var(p◦j ) =

〈(

S
∑

i=1

wiδΩij

)2〉

=

〈

S
∑

i=1

w2
i (δΩij)

2 +
S
∑

k 6=l=1

wkwlδΩkjδΩlj

〉

=

S
∑

i=1

w2
i 〈(δΩij)

2〉 +

S
∑

k 6=l=1

wkwl〈δΩkjδΩlj〉.

But 〈(δΩij)
2〉 = var(Ωij), and if we assume that simulations k and l (k 6= l) are uncorrelated, then

〈δΩkjδΩlj〉 = 0. Therefore

var(p◦j) =
S
∑

i=1

w2
i var(Ωij). (6)

Next, we express the variance of Ωij in terms of the variance of nij. Making use of the fact that

var(ax) = 〈a2x2〉 − 〈ax〉2 = a2〈x2〉 − (a〈x〉)2 = a2var(x), it follows from Equation 4 that

var(Ωij) =
var(nij)

N2
i c

2
ijf

2
i

and, therefore, that

var(p◦j ) =

S
∑

i=1

w2
i var(nij)

N2
i c

2
ijf

2
i

. (7)

We now need to determine the variance of nij. In general, if there are N independent samples in

a simulation, then the probability of having n counts in a histogram bin is given by the binomial

distribution

P (n) =

(

N

n

)

pn(1 − p)N−n, (8)
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where p is the probability of the bin. The mean and variance of the binomial distribution are np

and variance np(1 − p), respectively. In the limit of large N and small p, we can approximate the

binomial distribution by the Poisson distribution

P (n) = exp(−Np)
(Np)n

n!
,

which has mean and variance both equal to np (ref. 10 p. 32). The probability of bin j in simulation

i is ficijp
◦
j , and therefore (in limit of the Poisson approximation) the variance of nij is equal to

Nificijp
◦
j . Inserting this into Equation 7 we find that

var(p◦j) =
S
∑

i=1

w2
i p

◦
j

Nicijfi

. (9)

We now minimize Equation 9 with respect to wi subject to the constraint that
∑S

i=1
wi = 1.

Specifically, we minimize

Q =

S
∑

i=1

w2
i p

◦
j

Nicijfi

+ λ

S
∑

i=1

wi,

where λ is a Lagrange multiplier. Taking derivatives

∂Q

∂wk

=
2wkp

◦
j

Nkckjfk

+ λ

and setting them to zero, we find that

wk =
−Nkckj

2p◦j
λ.

Applying the constraint
S
∑

k=1

wk =
−λ

2p◦j

S
∑

k=1

Nkckj = 1,

we obtain

λ =
−2p◦j

∑S
i=1

Nicij
,

which finally gives the optimal wi:

wi =
Nicij

∑S
k=0

Nkcik
.

Substituting these weights into Equation 5, we obtain equation 2.
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2.2 The maximum likelihood derivation

We begin by noting that the probability of observing a histogram nij (j = 1 . . .M) is given by the

multinomial distribution

P (ni1, . . . , niM ) =
Ni!

∏M
k=1

nik!

M
∏

j=1

(pij)
nij , (10)

which can be thought of as the multivariate generalization of the binomial distribution of Equation

8. If the S simulations are uncorrelated, then the total probability of observing all S histograms is

the product of multinomials

P (ni1, . . . , niM , . . . , nS1, . . . , nSM ) =
S
∏

i=1





Ni!
∏M

k=1
nik!

M
∏

j=1

(pij)
nij





=

S
∏

i=1





Ni!
∏M

k=1
nik!

M
∏

j=1

(ficijp
◦
j)

nij



 . (11)

We will maximize Equation 11 with respect to fi (i = 1, . . . , S) and p◦j (j = 1, . . . ,M) subject to

the S constraints
∑m

j=1
ficijp

◦
j = 1. To facilitate this, we take the logarithm of Equation 11 and

drop all terms that are independent of fi and p◦j to obtain the log-likelihood function

L =

S
∑

i=1

M
∑

j=1

nij ln(ficijp
◦
j).

Since there are S constraints, there will be S Lagrange multipliers λi, giving

F =

S
∑

i=1

M
∑

j=1

[

nij ln(ficijp
◦
j) + λificijp

◦
j

]

.

Taking derivatives with respect to fi and p◦j we obtain

∂F

∂fk

=
M
∑

j=1

[

nkj

fk

+ λkckjp
◦
j

]

=
Nk

fk

+ λk

M
∑

j=1

ckjp
◦
j (12)
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and

∂F

∂p◦k
=

S
∑

i=1

[

nkj

p◦k
+ λificik

]

=

∑S
i=1

nik

p◦k
+

S
∑

i=1

λificik. (13)

Setting Equation 12 equal to zero and solving for λk, we find that

λk =
−Nk

∑M
j=1

fkckjp
◦
j

= −Nk, (14)

where we have made use of the constraint
∑m

j=1
ficijp

◦
j = 1. Substituting Equation 14 into Equation

13 and setting it equal to zero, we find that

∑S
i=1

nik

p◦k
=

S
∑

i=1

Nificik,

which when solved for p◦k gives Equation 2.

2.3 Independent estimation of the normalizing constants fi

In some cases, if particularly accurate estimates of fi are needed, or if the unbiased probabilities

are not required (i.e. if we are only interested in relative free energies), then the fi values can be

estimated directly without recourse to Equation 2. This approach does not require one to create

explicit histograms, which is useful if there is concern about the appropriate choice of histogram

bin widths for the finite sample sizes. To obtain the fi values, one can iteratively solve

f−1

i =

S
∑

j=1

Nj
∑

k=1

exp(−βiVij) exp[−(βi − β0)Eij ]
∑S

l=1
Nlfl exp(−βlVlk) exp[−(βl − β0)Elj ]

(15)

for the m values of fi,
4 where Vij and Eij are the values of the biasing potential and unbiased

potential energy, respectively, for the j-th sample in the i-th simulation. Although Kumar, et al. do

not provide a derivation for Equation 15, the proof is relatively straightforward. One begins by

substituting Equation 2 into Equation 3 to obtain

f−1

i =

M
∑

j=1

cij
∑S

k=1
nkj

∑S
l=1

Nlflclj
. (16)
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Next, we imagine that we make the histogram bin sizes increasingly small, so that we reach the

limit where each bin has exactly one sample (from all simulations) or none at all, i.e.
∑S

k=1
nkj is

either 0 or 1 for all bins j. Then we can rewrite Equation 16 as

f−1

i =
M
∑

j=1

∑

k

cik
∑S

l=1
Nlflclk

,

where the sum over k is over all occupied bins. However, the number of occupied bins is simply Nj ,

and we can replace the biasing factor cik associated with bin k with the actual values of the bias

and potential energy of the k-th sample, which leads to Equation 15.

3 The Effect of Correlations

In several places in the above derivations, assumptions were made about the histogram counts being

uncorrelated. In fact, two distinct assumptions were made, namely, that the counts contributing

to a given histogram are independent (which is implicit in Equations 8 and 10), and that the S

histograms are independent of each other (which is implicit in Equation 11 as well as the assumption

that 〈δΩkjδΩlj〉 = 0 which was used to arrive at Equation 6). We will now consider these two

assumptions individually.

The assumption of independence of histogram counts is clearly not valid for data generated using

MC or MD simulations, as samples near each other in time or sequence will be highly correlated with

each other. However, it is possible to correct for this effect by reducing the effective sample size,

as we will now demonstrate using an argument first suggested by Müller-Krumbhaar and Binder11

and recently more clearly formulated by Chodera, et al.12 This strategy is most easily understood

in the context of the “traditional” WHAM equation derivation of section 2.1, where the problem is

calculating the variance of nij in the presence of correlations.

Before tackling this problem, let us first consider the more general problem of calculating the
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standard error of the mean of a time-ordered sequence of random variables {x1, x2, . . . , xn} which

will represent some property of the sequence of samples from a single MD or MC simulation. The

mean value of x is simply x̂ = n−1
∑n

i=1
xi, and this is unaffected by the presence of correlations.

We are interested in the variance of x̂, i.e. the standard error of the mean. If the samples were

independent, then var(x̂) = var(x)/n. The presence of correlations will increase this variance, as

we will now calculate. Starting from the definition of the variance, we have

var(x̂) = 〈x̂2〉 − 〈x̂〉2

= n−2





〈(

n
∑

i=1

xi

)2〉

−

〈

n
∑

i=1

xi

〉2




= n−2





n
∑

i=1

n
∑

j=1

〈xixj〉 −

n
∑

i=1

n
∑

j=1

〈xi〉〈xj〉





= n−2





n
∑

i=1

〈x2
i 〉 +

n
∑

i6=j=1

〈xixj〉 −
n
∑

i=1

〈xi〉
2 −

n
∑

i6=j=1

〈xi〉〈xj〉





= n−1var(x) + n−2

n
∑

i6=j=1

(〈xixj〉 − 〈xi〉〈xj〉),

where in the last step we have assumed that the sequence {xi} is stationary, i.e. that 〈xj〉 = 〈xi〉

and 〈x2
j 〉 = 〈x2

i 〉 and for all i and j, which implies that
∑n

i=1
〈xi〉

2 = n〈x〉2 and
∑n

i=1
〈x2

i 〉 = n〈x2〉.

If we further assume that sequence {xi} is time-reversible, then we can write

var(x̂) = n−1var(x) + 2n−2
∑

j>i

(〈xixj〉 − 〈xi〉〈xj〉)

= n−1var(x) + 2n−2

n−1
∑

t=1

(n− t)(〈xixi+t〉 − 〈xi〉〈xi+t〉)

= n−1var(x) + 2n−1

n−1
∑

t=1

(1 − t/n)(〈xixi+t〉 − 〈x〉2).

If we further define g = 1 + 2τ , where the correlation time τ is given by

τ =

n−1
∑

t=1

(1 −
t

n
)
〈xixi+t〉 − 〈x〉2

var(x)
,
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then we can write

var(x̂) =
var(x)

n/g
, (17)

from which we can see that the effect of correlations is to reduce the effective sample size by a factor

of g.

Let us now return to the original problem of finding the variance of nij in the presence of

correlations. To simplify the notation, let us assume that we are only interested in the counts in one

bin of one simulation, which will allow us to dispense with subscripts. Define the indicator function

ψm =























1 if the m-th sample of simulation i is in bin j

0 otherwise

.

Then

nij =

Ni
∑

m=1

ψm

= Ni

(

1

Ni

Ni
∑

m=1

ψm

)

,

i.e. nij/Ni is the “time average” of ψm. Using Equation 17, we obtain var(ψ̂m) = g var(ψm)/Ni. But

nij = Niψ̂m, so

var(nij) = N2
i var(ψ̂m)

= gNi(〈ψ
2
m〉 − 〈ψm〉2).

But ψm is a (0, 1) indicator function. Therefore, ψ2
m = ψm and var(nij) = gNi〈ψm〉(1 − 〈ψm〉).

However, 〈ψm〉 is the probability of landing in bin j and simulation i. This is the same as the

variance of the binomial distribution 8, but with the sample size scaled by g, leading to the modified

WHAM equation

p◦j =

∑S
i=1

g−1

i nij
∑S

i=1
g−1

i Nificij
, (18)
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where gi is the scaling factor for the i-th simulation. It should be noted that in general g will

also depend on the bin index,12 though this is often neglected. If the g factors are independent

of simulation and bin, as Kumar et al.4 have argued for simulations that do not involve phase

transitions, then they cancel out, leaving the optimal estimate of p◦j unchanged from what would

be obtained in the absence of correlations.

The second assumption, that the simulations are independent, may or may not be reasonable,

depending on the simulations being analyzed. If separate simulations are performed using different

biasing potentials, then this assumption is obviously reasonable. In the case of temperature biasing

in replica exchange simulations, this may not be reasonable. This is because samples remain confor-

mationally and energetically correlated even though temperatures have been exchanged. Therefore,

two highly correlated samples could contribute to the same bin in two different histograms. The

proper treatment of this correlation is non-trivial, though at least one attempt have been made in

the literature.12

4 Estimation of errors in the unbiased probabilities

The maximum likelihood formulation of the WHAM equations lend themselves naturally to a

Bayesian interpretation. The product of multinomials (Equation 11) can be viewed not only as

a likelihood function, but also as the Bayesian posterior probability distribution of p◦j under the

assumption of a uniform prior:3

P (p◦1, . . . , p
◦
M |bin counts) ∝

S
∏

i=1

M
∏

j=1

(ficijp
◦
j)

nij . (19)
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We can rearrange the factors in Equation 19 to rewrite the posterior probability as

P (p◦1, . . . , p
◦
M |bin counts) ∝

S
∏

i=1

fNi

i

M
∏

j=1

c
nij

ij p
◦nij

j

=

(

S
∏

i=1

fNi

i

)





S
∏

i=1

M
∏

j=1

c
nij

ij









S
∏

i=1

M
∏

j=1

p
◦nij

j





∝





S
∏

i=1

(

M
∑

k=1

cikp
◦
k

)−Ni








M
∏

j=1

p
◦νj

j



 , (20)

where νj =
∑S

i=1
nij and where we have absorbed the factors independent of p◦j into the propor-

tionality constant. The second factor in Equation 20 is a Dirichlet distribution, for which standard

random number generators are available. We can use draws from such a generator as MC sampling

proposals to be accepted or rejected using a Metropolis-type rule in order to sample from the pos-

terior.3 Once such a sample has been generated, any moments of interest can be easily obtained.

Correlations can be accounted for by reducing nij by g as described above. This will increase the

width of the posterior, reflecting the effective loss of information due to correlations.
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